SESTSUIPSE

VPN 3T Y -
ao S

Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.12 JeffE and Ch.34 CLRS

All-Pairs Shortest Paths

the problem of finding shortest paths between all pairs of vertices in a graph.

Johnson’s algorithm for sparse graphs
O(V2lgV + VE)
uses the technique of reweighting

Set new weight

* The new set of edge weights must satisfy two important properties.

1. For all pairs of vertices u, v € V, a path p is a shortest path from u to
v using old weight function if and only if p is also a shortest path

from u to v using the new weight function.
2. For all edges, the new weight is nonnegative

Reweighting does not change shortest paths

Given a weighted, directed graph G = (V, E) with weight function w : £ — R,
let 7 : V — R be any function mapping vertices to real numbers. For each edge
(u,v) € E, define

w(u,v) =wu,v)+ hu)— h).

Let p = (vg. v, ..., v;) be any path from vertex vy to vertex v;. Then p is a
shortest path from vy to v, with weight function w if and only if it is a shortest path
with weight function w. That is, w(p) = 8(vg. vy) if and only if wW(p) = §(vy. vy).

Also, G has a negative-weight cycle using weight function w if and only if G has
a negative-weight cycle using weight function w.

Producing nonnegative weights by reweighting
first make a new graph

* Make a new graph
 Add a new vertex s

* Connect s to all other vertices with weight zero

* Note that because s has no edges that enter it, no shortest paths in
new graph, other than those with source s, contain s.

* Moreover, new graph has no negative-weight cycles if and only if the
initial graph has no negative-weight cycles.

New weight function
second calculate hand then w

* Define h(v) = 6(s,v) forallv € V.

By the triangle inequality we have h(v) < h(u) + w(u, v) for all
edges (u,v) € E'.
wu,v) = wu,v) + h(u) — h(v) = 0,

What is the relationship between the weight functions w and w
if w(u, v) 2 0 for all edges (u, v) € E?

A sample graph
-initially

A sample graph
-add a new vertex and compute shortest path from it

10

A sample graph

-shortest path from a vertex by considering new weights

11

Your friend claims that there is a simpler way to reweight edges than
the method used in Johnson’s algorithm.

Letting w* = min(u,v) € E {w(u,v)},
Define w(u,v) = w(u,v) —w" for all edges (u, v) € E.

What is wrong with the proposed method of reweighting?

Computing all-pairs shortest paths

JOHNSON(G)

1 compute G', where V[G'] = V[G] U {s},

E[G'] = E[G]U{(s,v) : v € V[G]}, and

w(s,v) =0forallv e V[G]
2 if BELLMAN-FORD(G’, w, s) = FALSE
3 then print “the input graph contains a negative-weight cycle”
4 else for each vertex v € V[G']
5 do set 1(v) to the value of (s, v)

computed by the Bellman-Ford algorithm

6 for each edge (u,v) € E[G']

7 do w(u, v) < w(u,v)+ h(u) — h(v)

8 for each vertex u € V|G|

9 do run DUUKSTRA (G, W, u) to compute g(u. v) forallv e V|G|
10 for each vertex v € V|[G]

11 do d,, <« 8(u,v) +h(v) —hu)

12 return D

* If the min-priority queue in Dijkstra’s algorithm is implemented by a
Fibonacci heap,

the running time of Johnson’s algorithm is O(V* lgV + V E).

The simpler binary min-heap implementation yields a running time of
O(V E lg V), which is still asymptotically faster than the Floyd-Warshall
algorithm if the graph is sparse.

Example
Show the values of h and W computed by the algorithm

15

